# Interface Design for Interoperability for the Land Information System

Submitted under Task Agreement GSFC-CT-2 Cooperative Agreement Notice (CAN) CAN-00OES-01

Increasing Interoperability and Performance of Grand Challenge

Applications in the Earth, Space, Life, and Microgravity Sciences

07/09/03

### History:

| Revision | Summary of Changes            | Date     |
|----------|-------------------------------|----------|
| 1.0      | Draft                         | 01/06/03 |
| 2.0      | Revised with CT team comments | 03/20/03 |
| 3.0      | Revised for Milestone I       | 07/09/03 |

## Contents

| 1            | Intr                             | roduction                                                                                                                                                                                         | 4                                          |  |  |  |  |  |  |  |  |
|--------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|--|--|
| 2            | Land Surface Modeling in LIS     |                                                                                                                                                                                                   |                                            |  |  |  |  |  |  |  |  |
| 3            | Internal Interoperability in LIS |                                                                                                                                                                                                   |                                            |  |  |  |  |  |  |  |  |
| 4            | Ext<br>4.1<br>4.2<br>4.3<br>4.4  | ernal Code Interoperability in LIS LIS and ESMF ESMF Infrastructure Adoption ESMF Superstructure Adoption ALMA Interfaces in LIS 4.4.1 Input Interface 4.4.2 ALMA Wrappers 4.4.3 Output Interface | 8<br>9<br>10<br>11<br>12<br>13<br>14<br>14 |  |  |  |  |  |  |  |  |
| 5            | Fin                              | al Remarks                                                                                                                                                                                        | <b>25</b>                                  |  |  |  |  |  |  |  |  |
| L            | 1 2 3 4 5 6 7 8                  | Structure of LIS                                                                                                                                                                                  | 6<br>8<br>9<br>10<br>10<br>11<br>12<br>13  |  |  |  |  |  |  |  |  |
| $\mathbf{L}$ | ist                              | of Tables                                                                                                                                                                                         |                                            |  |  |  |  |  |  |  |  |
|              | 1<br>2<br>3<br>4<br>5<br>6       | Mapping of Forcing variables to CLM input variables Mapping of Forcing variables to NOAH input variables Mapping of Forcing variables to VIC input variables                                      | 15<br>16<br>17<br>18<br>19                 |  |  |  |  |  |  |  |  |

| 7   | Mapping of ALMA and CLM output variables: SubSurface State Variables                                                              | 20  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| 8   | ables                                                                                                                             | 20  |
| 9   | Mapping of ALMA and CLM output variables: Evaporation variables  Mapping of ALMA and CLM output variables: Other hydrologic Vari- | 20  |
|     | ables                                                                                                                             | 20  |
| 10  | Mapping of ALMA and CLM output variables: Cold Season Processes                                                                   | 21  |
| 11  | Mapping of ALMA and CLM output variables: Variables to be com-                                                                    |     |
|     | pared with remote sensed data                                                                                                     | 21  |
| 12  | Mapping of ALMA and NOAH output variables : General Energy                                                                        |     |
|     | Balance                                                                                                                           | 21  |
| 13  | Mapping of ALMA and NOAH output variables : General Water Balance                                                                 | 22  |
| 14  | Mapping of ALMA and NOAH output variables : Surface State Variables                                                               | 22  |
| 15  | Mapping of ALMA and NOAH output variables : SubSurface State                                                                      |     |
|     | Variables                                                                                                                         | 23  |
| 16  | Mapping of ALMA and NOAH output variables: Evaporation Variables                                                                  | 23  |
| 17  | Mapping of ALMA and NOAH output variables: Other hydrologic                                                                       |     |
|     | Variables                                                                                                                         | 23  |
| 18  | Mapping of ALMA and NOAH output variables: Cold Season Processes                                                                  | 24  |
| 19  | Mapping of ALMA and NOAH output variables: Variables to be                                                                        | 2.4 |
| 2.0 | compared with remote sensed data                                                                                                  | 24  |
| 20  | Mapping of ALMA and VIC output variables: General Energy Balance                                                                  | 25  |
| 21  | Mapping of ALMA and VIC output variables: General Water Balance                                                                   | 26  |
| 22  | Mapping of ALMA and VIC output variables: Surface State Variables                                                                 | 26  |
| 23  | Mapping of ALMA and VIC output variables : SubSurface State Vari-                                                                 | 07  |
| 0.4 | ables                                                                                                                             | 27  |
| 24  | Mapping of ALMA and VIC output variables: Evaporation Variables                                                                   | 27  |
| 25  | Mapping of ALMA and VIC output variables: Other hydrologic Vari-                                                                  | 07  |
| 0.0 | ables                                                                                                                             | 27  |
| 26  | Mapping of ALMA and VIC output variables: Cold Season Processes                                                                   | 28  |
| 27  | Mapping of ALMA and VIC output variables: Variables to be com-                                                                    | 00  |
|     | pared with remote sensed data                                                                                                     | 28  |

### 1 Introduction

This document describes the design policy for interoperability for the Land Information System (LIS) [5] implemented under funding from NASA's ESTO Computational Technologies Project. This design is submitted to satisfy the Task Agreement GSFC-CT-2 under Cooperative Agreement Notice CAN-00-OES-01 increasing interoperability and performance of grand challenge applications in the earth, space, life, and microgravity sciences.

Code interoperability is important not only between components of a research application, but also between different applications, to decrease the cost of development. Research applications with reusable components facilitate faster development of future applications and enables a broader user base.

This document outlines two different types of interoperability that LIS intends to define and adopt:

- Internal Interoperability: This is interoperability that is provided by LIS to the land surface modeling community. LIS will provide an interoperable framework for the land surface modeling community by defining adaptive, extensible interfaces for incorporating new land surface models into LIS.
- External Interoperability: Participate with Earth, space, life, and microgravity scientific communities by adopting the utilities and compliance guidelines provided by the earth system modeling framework (ESMF) [3]. LIS will also comply with established land surface modeling standards such as assistance for land modeling activities (ALMA) [1].

## 2 Land Surface Modeling in LIS

In general, land surface modeling seeks to predict the terrestrial water, energy, and biogeochemical processes by solving the governing equations of soil-vegetation-snowpack medium. Land surface modeling combined with data assimilation seeks to synthesize data and land land surface models to improve our ability to predict and understand these processes. The ability to predict terrestrial water, energy, and biogeochemical processes is critical for applications in weather and climate prediction, agricultural forecasting, water resources management, hazard mitigation and mobility assessment.

In order to predict water, energy, and biogeochemical processes using (typically 1-D vertical) partial differential equations, land surface models require three types of inputs: (1) initial conditions, which describe the initial state of land surface; (2) boundary conditions, which describe both the upper (atmospheric) fluxes or states, also known as "forcings" and also the lower(soil) fluxes or states; and (3) parameters,

which are a function of soil, vegetation, topography, etc., and are used to solve the governing equations.

LIS uses the LDAS [4] model control and input/output system that drives multiple offline one dimensional land surface models (LSMs) to facilitate global land surface modeling within a data assimilation system framework. LIS is expected to include three different land surface models, namely, CLM [2], NOAH [6], and VIC [7]. The driver in LIS uses various satellite and ground based observation systems within a land data assimilation framework to produce optimal output fields of land surface states and fluxes. In addition to being forced with real time output from numerical prediction models and satellite radar precipitation measurements, LDAS derives model parameters from existing topography, vegetation and soil coverages. The model results are aggregated to various temporal and spatial scales, e.g., 3 hourly,  $0.25^{\circ} \times 0.25^{\circ}$ .

The execution of LIS starts with reading in the user specifications. The user selects the model domain and spatial resolution, the duration and timestep of the run, the land surface model, the type of forcing from a list of model and observation-based data sources, the number of "tiles" per grid square, the soil parameterization scheme, reading and writing of restart files, output specifications, and the functioning of several other enhancements including elevation correction and data assimilation. The LSMs in LIS are driven by atmospheric forcing data such as precipitation, radiation, wind speed, humidity, etc., from various sources. LIS applies spatial interpolation to convert forcing data to the appropriate resolution required by the model. Since the forcing data is read in at regular intervals, LIS also temporally interpolates time average or instantaneous data to that needed by the model at the current time step. Figure 1 shows the modeling structure of LIS.

## 3 Internal Interoperability in LIS

The concept of "internal" interoperability is to provide an interoperable framework for the land surface modeling community by defining adaptive, extensible interfaces for incorporating new land surface models and other features into LIS. This is the interoperability that is provided by LIS to the land surface modeling community to facilitate adoption of new or improved land surface models and input data.

This is achieved by reorganizing the central driver of LIS. The LIS driver is designed using advanced features of Fortran 90 programming language, which are especially useful for object oriented programming. The LIS driver is designed using object oriented design principles, providing a number of well-defined interfaces or "hook points" for enabling rapid prototyping and development of new features and applications into LIS.

Figure 2 shows the organization of some of the main modules and the main



Figure 1: Structure of LIS

driver in LIS. Figure 1 shows the main modeling functions of the driver. The design shown in 2 separates these functions into different modules that capture a certain program behavior. The ldasdrv\_module contains some of the driver routines, lsm\_module captures the main functionalities associated with the operation of a land surface model, baseforcing\_module provides abstractions of model forcing behavior, obsradforcing\_module and obsprecipforcing\_module captures the observed

radiation and observed precipitation forcing behavior, respectively, and spmdMod and lislog\_module provides routines for parallel environment control and error/log diagnostic control, respectively. Each of these modules contain extensible interfaces for the program segment it represents. For example, lsm\_ module provides interfaces and subroutines required for initialization, execution, restart and managing output of an LSM. A more detailed organization is shown in Figure 3.

The main driver that initializes other modules is represented by lisdrv. lisdrv initializes parallelization routines through spmdMod and the driver routines through through ldasdrv\_module. ldas\_module contains the variables for LSM initializations, executions and outputs. The representation and management of time is encompassed in time\_module and grid\_module contains the variables used for spatial grid representation. baseforcing\_module includes interfaces that are used to incorporate different atmospheric and observation forcings. As explained earlier, lsm\_module provides interfaces that can be extended to incorporate new LSMs.

The modules in LIS are constructed using a component-based design. As mentioned earlier, each module/component represents a program segment that is functionally related. The interfaces are implemented by using a number of virtual function tables and the actual delegation of the calls are done at runtime by resolving the function names from the table. C language allows the capabilities to store functions, table them and pass them as arguments. F90 allows passing of functions as arguments. By combining both these languages, LIS uses a complete set of operations with function pointers.

Figure 4 shows the interfaces in the lsm\_module. To incorporate a new LSM in LIS, methods corresponding to each of these interfaces need to be implemented. Once these methods are implemented, they need to be stored in the virtual function tables that correspond to these interfaces. The register functions shown in Figure 5 enable the creation of virtual function tables.

Similar constructs using virtual function tables are employed for other modules such as baseforcing\_module, obsradforcing\_ module, and obsprecipforcing\_module, enabling the definition of explicit interfaces that are functionally relevant only to the respective program segment.

The design of LIS driver presented above achieves encapsulation of data and control. The underlying representation does not need to be changed to incorporate a new forcing or a new LSM. The code also simulates polymorphism by allowing the initializations and executions to be determined at runtime. For example, <code>lsm\_module</code> contains a global table of pointers for each LSM in the inheritance hierarchy. <code>lsm\_module</code> acts as a polymorphic class, delegating the program flow based on the global pointer that is instantiated. This method also helps in facilitating defining operation of ensembles of LSMs in addition to individual LSMs. Together, these concepts help to organize the code, making them more flexible, maintainable, and extensible.



Figure 2: Organization of main modules in LIS driver

## 4 External Code Interoperability in LIS

To demonstrate interoperability with other scientific modeling communities, LIS will comply with the ALMA data exchange convention and employ the utilities and extensible interfaces provided by ESMF.



Figure 3: Detailed organization of modules in LIS driver

### 4.1 LIS and ESMF

The purpose of ESMF is to develop a framework that provides a structured collection of building blocks that can be customized to develop model components. ESMF can be broadly viewed as consisting of an infrastructure of utilities and data structures for building model components and a superstructure for coupling and running them. The use of ESMF interfaces and utilities in LIS allows for future coupling with earth system models such as atmospheric models.

```
!Methods for initialization
interface LIS_lsm_init
interface LIS_setuplsm
                           !Methods for LSM setup
                            !(parameter initializations)
interface LIS_setDynlsm
                            !Methods to set time dependent
                           !parameters
interface LIS_force2tile
                           !Transfer forcing data to model tiles
interface LIS_lsm_main
                           !LSM execution for a timestep
interface LIS_readrestart
                           !Routines to read a restart file
interface LIS_writerestart !Routines to write a restart file
interface LIS_lsm_output
                            !Routines to write model output
```

Figure 4: Interfaces in lsm\_module

```
call registerlsmini(noah_varder_ini)
       ! Registers noah's initialization function
call registerlsmsetup(noah_setup)
       ! Registers noah's setup function
call registersetdynlsm(noah_setdyn)
       ! Registers noah's dynamic setup routines
call registerf2t(noah_f2t)
       ! Registers forcing transfer function for noah
call registerlsmrun(noah_main)
       ! Registers noah's execution routine
call registerlsmoutput(noah_output)
       ! Registers noah's output routine
call registerlsmreadrestart(noahrst)
       ! Registers noah's restart reading routine
call registerlsmwriterestart(noah_writerestart)
       ! Registers noah's restart writing routine
```

Figure 5: Register functions in lsm\_module

## 4.2 ESMF Infrastructure Adoption

The ESMF infrastructure layer contains both higher level data handling objects and lower level utility routines. The infrastructure layer provides abstractions for fields and group of fields discretized on grids in classes such as Field, Grid, Bundle

etc. LIS plans to adopt these representations necessary for implementing coupled applications and to make use of some of the infrastructure utilities such as Regrid.

The utility layer presents a uniform interface for common system functions such as time manager, basic communications, error handler, diagnostics, etc. LIS currently uses the ESMF time manager and the logging and error diagnostics tools. The time management utility provides useful functions for time and data calculations and higher level functions that control model time stepping and alarms. The log utility organizes diagnostic output and allows for searches and filters to be constructed. The error handler provides both uniform handling of errors and a way for users to select how the errors will be handled. Figure 6 shows a schematic view of the interaction between LIS and ESMF infrastructure. The solid lines represent the utilities currently used by LIS and the dotted lines represent the some of the tools that will be implemented in the future.



Figure 6: LIS and ESMF

## 4.3 ESMF Superstructure Adoption

ESMF also defines a number of guidelines for applications that are intended to be coupled with other Earth system models. ESMF provides definitions of a Gridded Component class for user-supplied components discretized on grids and a Coupler Component class for the software that is used to couple them together. LIS will implement the interfaces required to be a Gridded Component and will use ESMF\_State class to exchange information with other models and systems. A land surface model can be coupled with other earth system models by implementing it as a Gridded Component. However, since LIS provides the infrastructure to drive different offline

land surface models, implementing LIS itself as a **Gridded Component** will allow any LSM in LIS to be used for coupling with other earth system models. LIS could serve as the land modeling component in the coupled system, providing the best possible surface fluxes to the atmospheric modeling components. Figure 7 shows a simple sequence diagram for running an application with LIS being coupled to an atmospheric model, exchanging data through custom-defined couplers.



Figure 7: Sequence diagram for running a simple coupled application using LIS as an ESMF Gridded Component

The LIS milestone J (July 2004) will be the implementation of the ESMF compliant version of CLM in the LIS. As mentioned earlier, LIS also plans to use several Infrastructure utilities including regridding, I/O and communication services.

#### 4.4 ALMA Interfaces in LIS

ALMA is a data exchange convention to facilitate the exchange of forcing data for LSM and the results produced by these schemes. The ALMA scheme enables intercomparisons of land surface schemes and ensures that the implementation of proce-

dures to exchange data needs to be done only once. ALMA provides a list of variables needed to force LSMs and a summary of output variable definitions for LSM intercomparisons.

By implementing the ALMA convention in the LIS driver, LIS can exchange data with other land surface modeling systems that are also ALMA compliant. Further, it will enable the use of LIS for intercomparison of land surface models for high resolution global modeling.

In order for LIS to be ALMA compliant, a number of interfaces need to be defined as shown in Figure 8. The forcing data is fetched from various locations on the internet, and after preprocessing is fed to the LIS driver, which in turns controls the execution of different LSMs. The input interface is expected to convert the forcing data into an ALMA compliant form. The ALMA wrappers for each LSM is expected to perform the translation of LIS driver variables to the LSM variables. The output interface is intended to convert the outputs from various LSMs into an ALMA format. Various design issues for these interfaces are discussed below.



Figure 8: Proposed ALMA interfaces in LIS

#### 4.4.1 Input Interface

Global atmospheric model predictions provide baseline forcing for LIS, but whenever possible, the modeled fields are replaced or corrected by observation-based fields. The global data are currently in various different data formats. The preprocessing

routines for input data will convert the fetched data from internet into a self describing data format such as netcdf/grib. The Input interface will make use of the metadata information present in these data files along with the input forcing ALMA definitions to generate an ALMA compliant format. Special attention need to be paid to the following issues.

- Units: All the required information to convert a forcing variable to the ALMA definition form need to be supplied. An exhaustive list of possibilities for the each forcing field need to be defined. Some special cases might also include dimensionless variables. For e.g, all the required information to convert a relative humidity value to a specific humidity value need to be specified.
- Direction: The sign conventions for each variable definition need to be converted to the ALMA format. Some forcing schemes might define a positive sign to be for an exchange from land to atmosphere, whereas another might consider positive sign to be for a downward direction from the sun to the earth. An exhaustive list of possible fields that need to covert a given directional definition to the ALMA format need to be specified.
- Other issues: The LIS driver might require some variables (derived or otherwise) that does not fall within the current definition of input ALMA definition. The input interface will provide these variables. Compliance to the ALMA input/output definitions is considered to be providing all the variables that are specified in the definition.

#### 4.4.2 ALMA Wrappers

Each LSM scheme included in LIS is expected to be capable of receiving variables in the ALMA form. The ALMA wrappers for each LSM will perform the required conversion from LIS driver variables to LSM variables in accordance with the ALMA format. The design includes a list of conversions required. Tables 1, 2, and 3 shows the mapping of forcing data to the respective model variables for CLM, NOAH, and VIC, respectively.

#### 4.4.3 Output Interface

Defining a generic output interface that converts output variables from different LSMs to an ALMA format is difficult, since explicit information is required to do the mapping from an LSM variable to a corresponding ALMA output variable. One of the intents of the ALMA standard is to put the onus of complying to the ALMA output standard on the LSMs so that intercomparisons between them can be done seamlessly.

Table 1: Mapping of Forcing variables to CLM input variables

| ALMA        | Units                                                                                                                                   | Sign | CLM           | Units                                 | Sign | Required   |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|------|---------------|---------------------------------------|------|------------|
| variable    |                                                                                                                                         |      | variable      |                                       |      | Conversion |
| $Wind_{-}N$ | $\frac{m}{s}$                                                                                                                           | N    | $forc\_u$     | $\frac{m}{s}$                         | N    | -          |
| $Wind_{-}E$ | $\frac{m}{s}$                                                                                                                           | E    | $forc\_v$     | $\frac{m}{s}$                         | E    | -          |
| Rainf       | $egin{array}{c} rac{m}{s} \\ rac{m}{s} \\ rac{kg}{m^2 s} \\ rac{kg}{m^2 s} \end{array}$                                             | D    | $forc\_rain$  | $\frac{\frac{s}{m}}{\frac{kg}{m^2s}}$ | D    |            |
| Snowf       | $\frac{kg}{m^2s}$                                                                                                                       | D    |               |                                       |      |            |
| Tair        | K                                                                                                                                       | -    | $forc_{-}t$   | K                                     | -    | -          |
| Qair        | $rac{kg}{kg}$                                                                                                                          | -    | $forc\_q$     | _                                     | -    | -          |
| PSurf       | Pa                                                                                                                                      | -    | $forc\_pbot$  | Pa                                    | _    |            |
| SWdown      | $\frac{W}{m^2}$                                                                                                                         | D    | $forc\_solad$ | $\frac{W}{m^2}$                       | D    | -          |
| LWdown      | $\frac{W}{m^2}$                                                                                                                         | D    | $forc\_lwrad$ | $\frac{\frac{W}{m^2}}{\frac{W}{m^2}}$ | D    | -          |
| LSRainf     | $\frac{kg}{m^2s}$                                                                                                                       | -    |               |                                       |      |            |
| CRainf      | $\begin{array}{c} \frac{W}{m^2} \\ \frac{W}{m^2} \\ \frac{kg}{m^2s} \\ \frac{kg}{m^2s} \\ \frac{kg}{m^2s} \\ \frac{kg}{kg} \end{array}$ | -    |               |                                       |      |            |
| CSnowf      | $\frac{kg}{m^2s}$                                                                                                                       | -    |               |                                       |      |            |
| LSSnowf     | $\frac{kg}{m^2s}$                                                                                                                       | _    |               |                                       |      |            |
| SVRainf     | $\left(\frac{kg}{m^2s}\right)^2$                                                                                                        | -    |               |                                       |      |            |
| SVSnowf     | $\left(\frac{kg}{m^2s}\right)^2$                                                                                                        | -    |               |                                       |      |            |

Table 2: Mapping of Forcing variables to NOAH input variables

| ALMA        | Units                                                                                       | Sign | NOAH     | Units                                 | Sign     | Required   |
|-------------|---------------------------------------------------------------------------------------------|------|----------|---------------------------------------|----------|------------|
| variable    |                                                                                             |      | variable |                                       |          | Conversion |
| $Wind_{-}N$ | $\frac{m}{s}$                                                                               | N    | VWIND    | $\frac{m}{s}$                         | N        | -          |
| $Wind_{-}E$ | $\frac{m}{s}$                                                                               | E    | UWIND    | $\frac{m}{s}$                         | ${ m E}$ | -          |
| Rainf       | $egin{array}{c} rac{m}{s} \\ rac{m}{s} \\ rac{kg}{m^2 s} \\ rac{kg}{m^2 s} \end{array}$ | D    | PRCP     | $\frac{mm}{s}$                        | D        |            |
| Snowf       | $\frac{kg}{m^2s}$                                                                           | D    |          |                                       |          |            |
| Tair        | K                                                                                           | -    | SFCTEMP  | K                                     | -        | -          |
| Qair        | $rac{kg}{kg}$                                                                              | -    | Q2       | -                                     | -        | -          |
| PSurf       | Pa                                                                                          | -    | SFCPRS   | Pa                                    | -        |            |
| SWdown      | $\frac{W}{m^2}$                                                                             | D    | SOLDN    | $\frac{W}{m^2}$                       | D        | -          |
| LWdown      | $\frac{W}{m^2}$                                                                             | D    | LWDN     | $\frac{\frac{W}{m^2}}{\frac{W}{m^2}}$ | D        | -          |
| LSRainf     | $\frac{kg}{m^2s}$                                                                           | -    |          |                                       |          |            |
| CRainf      | $\frac{W}{m^2}$ $\frac{W}{W}$ $\frac{w}{m^2}$ $\frac{kg}{m^2s}$ $\frac{kg}{m^2s}$           | -    | CPCP     | $\frac{mm}{s}$                        | -        |            |
| CSnowf      | $\frac{kg}{m^2s}$                                                                           | -    |          |                                       |          |            |
| LSSnowf     | $\frac{kg}{m^2s}$                                                                           | -    |          |                                       |          |            |
| SVRainf     | $\left(\frac{kg}{m^2s}\right)^2$                                                            | -    |          |                                       |          |            |
| SVSnowf     | $\left(\frac{kg}{m^2s}\right)^2$                                                            | -    |          |                                       |          |            |
| Wind        | $\frac{m}{s}$                                                                               | -    | SFCSPD   | $\frac{m}{s}$                         | -        | _          |

Table 3: Mapping of Forcing variables to VIC input variables

|             |                                                                         | -            |             |                                       |      |            |
|-------------|-------------------------------------------------------------------------|--------------|-------------|---------------------------------------|------|------------|
| ALMA        | Units                                                                   | Sign         | VIC         | Units                                 | Sign | Required   |
| variable    |                                                                         |              | variable    |                                       |      | Conversion |
| $Wind_{-}N$ | $\frac{m}{s}$                                                           | N            |             |                                       |      |            |
| $Wind_{-}E$ | $\frac{s}{m}$                                                           | $\mathbf{E}$ |             |                                       |      |            |
| Rainf       | $\frac{\frac{kg}{kg}}{\frac{m^2s}{m^2s}}$                               | D            | prec        | $\frac{kg}{m^2s}$                     | D    |            |
| Snowf       | $\frac{kg}{m^2s}$                                                       | D            |             |                                       |      |            |
| Tair        | K                                                                       | -            | $air\_temp$ | C                                     |      |            |
| Qair        | $rac{kg}{kg}$                                                          | -            |             | -                                     | -    | _          |
| PSurf       | Pa                                                                      | _            | pressure    | kPa                                   | _    |            |
| SWdown      | $\frac{W}{m^2}$                                                         | D            | shortwave   | $\frac{W}{m^2}$                       | D    | _          |
| LWdown      | $\frac{\frac{W}{m^2}}{\frac{W}{m^2}}$ $\frac{kg}{m^2s}$ $\frac{kg}{kg}$ | D            | longwave    | $\frac{\frac{W}{m^2}}{\frac{W}{m^2}}$ | D    | _          |
| LSRainf     | $\frac{kg}{m^2s}$                                                       | -            |             |                                       |      |            |
| CRainf      | $\frac{\overline{m^2s}}{m^2s}$                                          | -            |             |                                       | -    |            |
| CSnowf      | $\frac{kg}{m^2s}$                                                       | -            |             |                                       |      |            |
| LSSnowf     | $\frac{kg}{m^2s}$                                                       | -            |             |                                       |      |            |
| SVRainf     | $\left(\frac{kg}{m^2s}\right)^2$                                        | _            |             |                                       |      |            |
| SVSnowf     | $\left(\frac{kg}{m^2s}\right)^2$                                        | _            |             |                                       |      |            |
| Wind        | $\frac{m}{s}$                                                           | _            | wind        | $\frac{m}{s}$                         | _    | -          |

| ALMA        | Units                                                                                                                                                                                                                                           | Sign   | Priority | CLM                   | Units                                                                                 | Sign | Status |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-----------------------|---------------------------------------------------------------------------------------|------|--------|
| variable    |                                                                                                                                                                                                                                                 |        |          | variable              |                                                                                       |      |        |
| SWnet       | $\frac{W}{m^2}$                                                                                                                                                                                                                                 | D      | M        | totfsa                | $\frac{W}{m^2}$                                                                       | D    | Y      |
| LWnet       | $\frac{W}{m^2}$                                                                                                                                                                                                                                 | D      | M        | $toteflx\_lwrad\_net$ | $\frac{W}{m^2}$                                                                       | D    | Y      |
| Qle         | $\frac{W}{m^2}$                                                                                                                                                                                                                                 | U      | M        | $toteflx\_lh\_tot$    | $\frac{W}{m^2}$                                                                       | U    | Y      |
| Qh          | $\frac{W}{m^2}$                                                                                                                                                                                                                                 | U      | M        | $toteflx\_sh\_tot$    | $\frac{W}{m^2}$                                                                       | U    | Y      |
| Qg          | $\frac{W}{m^2}$                                                                                                                                                                                                                                 | D      | M        | $toteflx\_soil\_grnd$ | $\frac{\frac{W}{m^2}}{\frac{W}{m^2}}$ $\frac{W}{m^2}$ $\frac{W}{m^2}$ $\frac{W}{m^2}$ | D    | Y      |
| Qf          | $\frac{W}{m^2}$                                                                                                                                                                                                                                 | S to L | R        |                       | 770                                                                                   |      | U      |
| Qv          | $\frac{W}{m^2}$                                                                                                                                                                                                                                 | S to V | О        |                       |                                                                                       |      | U      |
| Qtau        | $\frac{N}{m^2}$                                                                                                                                                                                                                                 | D      | R        |                       |                                                                                       |      | U      |
| Qa          | $\frac{W}{m^2}$                                                                                                                                                                                                                                 | D      | О        |                       |                                                                                       |      | U      |
| DelSurfHeat | $\frac{n_f}{m^2}$                                                                                                                                                                                                                               | I      | R        |                       |                                                                                       |      | U      |
| DelColdCont | $\frac{W}{M^2}$ $\frac{W}{W}$ | I      | R        |                       |                                                                                       |      | U      |

Table 4: Mapping of ALMA and CLM output variables: General Energy Balance

LIS will adopt this philosophy, assuming that the LSMs are ALMA compliant. The sign column shows the direction of positive values (D (Downward), U (Upward), S to L (Solid to Liquid), S to V (Solid to Vapor), N (Northward), E (Eastward), Out (Out of grid cell) and In (Into grid cell))

ALMA output standard lists a number of mandatory variables that are required to do water and energy balance. The output interface will use these variables to compute water and energy balance calculations for different LSMs. The output of recommended and optional variables will depend on the LSM employed.

A mapping between lists of ALMA output variables and LSM variables are presented in Tables 4 to 27. Similar to the input interface, other LSMs in LIS are also expected to provide mapping between their output variables and ALMA output variables.

The ALMA standard categorizes each ALMA variables into a priority category, which appears in Tables 4 to 27 under the heading Priority. The priority indicates whether the variable is mandatory(M), recommended (R), or optional(O), to comply with the standard.

The status category in Tables 4 to 27 indicates the current status of the ALMA variable in the land surface model. A yes(Y) indicates that the ALMA mandatory variable is currently output from the model. A no(N) indicates that the ALMA mandatory variable does not exist in the current output from the model and would require changes in the model code to calculate the variable. An unavailable(U) variable indicates that the variable is not part of the model output currently.

Table 5: Mapping of ALMA and CLM output variables: General Water Balance

| ALMA         | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sign      | Priority | $\operatorname{CLM}$ | Units                                                                             | Sign   | Status |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------------------|-----------------------------------------------------------------------------------|--------|--------|
| variable     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |          | variable             |                                                                                   |        |        |
| Snowf        | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D         | M        | totsnow              | $\frac{kg}{m^2s}$                                                                 | D      | Y      |
| Rainf        | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D         | M        | totrain              | $\frac{kg}{m^s}$                                                                  | D      | Y      |
| Evap         | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U         | M        | $totqflx\_evap$      | $\frac{\frac{kg}{m^2s}}{\frac{kg}{m^s}}$ $\frac{\frac{kg}{m^s}}{\frac{kg}{m^2s}}$ | U      | Y      |
| Qs           | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Out       | M        | $totqflx\_surf$      | $\frac{kg}{m^2s}$                                                                 | Out    | Y      |
| Qrec         | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ${ m In}$ | О        |                      | 110 0                                                                             |        | U      |
| Qsb          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Out       | M        | $totqflx\_drain$     | $\frac{kg}{m^2s}$                                                                 | Out    | Y      |
| Qsm          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S to L    | M        | $totqflx\_snomelt$   | $\frac{\frac{kg}{m^2s}}{\frac{kg}{m^2s}}$                                         | S to L | U      |
| Qfz          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L to S    | M        |                      | 110 0                                                                             |        | U      |
| Qst          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -         | R        |                      |                                                                                   |        | U      |
| DelSoilMoist | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I         | M        |                      |                                                                                   |        |        |
| DelSWE       | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I         | M        | delswe               | $\frac{kg}{m^2}$                                                                  | I      | Y      |
| DeslSurfStor | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I         | M        |                      | ,,,,                                                                              |        | U      |
| DelIntercept | $\begin{array}{c c} kg \\ m^2s \\ kg \\ m^2g \\ kg \\ kg \\ m^2g \\ kg \\ kg \\ m^2g \\ kg \\ $ | I         | R        |                      |                                                                                   |        | U      |

Table 6: Mapping of ALMA and CLM output variables : Surface State Variables

| ALMA      | Units                                                                           | Sign | Priority | $\operatorname{CLM}$ | Units            | Sign | Status |
|-----------|---------------------------------------------------------------------------------|------|----------|----------------------|------------------|------|--------|
| variable  |                                                                                 |      |          | variable             |                  |      |        |
| SnowT     | K                                                                               | -    | M        | snow temp            | K                | -    | Y      |
| VegT      | K                                                                               | -    | M        | $t\_veg$             | K                | -    | Y      |
| BareSoilT | K                                                                               | -    | M        | $t\_grnd$            | K                | -    | Y      |
| AvgSurfT  | K                                                                               | -    | M        | $t\_rad$             | K                | -    | Y      |
| RadT      | K                                                                               | -    | M        | $t\_rad$             | K                | -    | Y      |
| Albedo    | -                                                                               | -    | M        | surfalb              | -                | -    | Y      |
| SWE       | $\frac{kg}{m^2}$                                                                | -    | M        | h2ocan               | $\frac{kg}{m^2}$ | -    | Y      |
| SWEVeg    | $\frac{kg}{m^2}$                                                                | _    | О        |                      |                  | _    | U      |
| SurfStor  | $\frac{\frac{kg}{m^2}}{\frac{kg}{m^2}}$ $\frac{\frac{kg}{m^2}}{\frac{kg}{m^2}}$ | -    | M        |                      |                  |      | N      |

Table 7: Mapping of ALMA and CLM output variables : SubSurface State Variables

| ALMA       | Units            | Sign | Priority | CLM      | Units | Sign | Status |
|------------|------------------|------|----------|----------|-------|------|--------|
| variable   |                  |      |          | variable |       |      |        |
| SoilMoist  | $\frac{kg}{m^2}$ | -    | M        |          | -     | -    | Y      |
| SoilTemp   | K                | _    | R        |          |       |      | U      |
| SMLiqFrac  | _                | _    | О        |          |       |      | U      |
| SMFrozFrac | _                | _    | О        |          |       |      | U      |
| SoilWet    | _                | _    | M        | soilwtc  | -     | -    | Y      |

Table 8: Mapping of ALMA and CLM output variables : Evaporation Variables

| ALMA      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sign | Priority | CLM      | Units                                     | Sign | Status |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|----------|-------------------------------------------|------|--------|
| variable  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | variable |                                           |      |        |
| PotEvap   | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | R        |          |                                           |      | U      |
| ECanop    | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | R        |          |                                           | U    | Y      |
| TVeg      | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | M        | cantrn   | $\frac{kg}{m^2s}$                         | U    | Y      |
| ESoil     | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | M        | bare     | $\frac{\frac{kg}{m^2s}}{\frac{kg}{m^2s}}$ | U    | Y      |
| EWater    | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | R        |          | 0                                         |      | U      |
| RootMoist | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -    | M        | soilmr   | $\frac{kg}{m^2s}$                         |      | Y      |
| CanopInt  | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _    | R        |          | 0                                         | _    | Y      |
| EvapSnow  | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _    | R        |          |                                           | _    | Y      |
| SubSnow   | $\frac{\ddot{k}g}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -    | R        |          |                                           | _    | Y      |
| SubSurf   | $\begin{array}{c c} kg \\ \hline m^2 s \\ kg \\ \hline m^2 s \\ kg \\ m^2 s \\ kg \\ \hline m^2 s \\ kg \\ kg \\ m^2 s \\ kg \\ kg$ | _    | R        |          |                                           |      | U      |
| ACond     | $\frac{m}{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -    | M        | acond    | $\frac{m}{s}$                             | -    | Y      |

Table 9: Mapping of ALMA and CLM output variables : Other hydrologic Variables

| ALMA        | Units         | Sign | Priority | CLM      | Units | Sign | Status |
|-------------|---------------|------|----------|----------|-------|------|--------|
| variable    |               |      |          | variable |       |      |        |
| Dis         | $\frac{m}{s}$ | -    | О        |          |       |      | U      |
| WaterTableD | m             | -    | О        |          |       |      | N      |

Table 10: Mapping of ALMA and CLM output variables: Cold Season Processes

| ALMA          | Units | Sign | Priority | CLM      | Units | Sign | Status |
|---------------|-------|------|----------|----------|-------|------|--------|
| variable      |       |      |          | variable |       |      |        |
| SnowFrac      | -     | -    | О        |          |       |      | U      |
| RainSnowFrac  | _     | _    | О        |          |       |      | U      |
| SnowfSnowFrac | _     | _    | О        |          |       |      | U      |
| IceFrac       | _     | _    | О        |          |       |      | U      |
| IceT          | m     | _    | О        |          |       |      | U      |
| Fdepth        | m     | _    | О        |          |       |      | U      |
| Tdepth        | m     | _    | О        |          |       |      | U      |
| SAlbedo       | -     | -    | R        |          |       |      | U      |
| SnowTProf     | K     | _    | R        |          |       |      | U      |
| SnowDepth     | m     | _    | R        |          |       | _    | U      |
| SliqFrac      | _     | -    | R        |          |       |      | U      |

Table 11: Mapping of ALMA and CLM output variables : Variables to be compared with remote sensed data

| ALMA     | Units           | Sign | Priority | CLM      | Units | Sign | Status |
|----------|-----------------|------|----------|----------|-------|------|--------|
| variable |                 |      |          | variable |       |      |        |
| LWup     | $\frac{W}{m^2}$ | U    | R        |          |       |      |        |

Table 12: Mapping of ALMA and NOAH output variables: General Energy Balance

| ALMA        | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sign   | Priority | NOAH            | Units                                                                               | Sign | Status |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-----------------|-------------------------------------------------------------------------------------|------|--------|
| variable    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |          | variable        |                                                                                     |      |        |
| SWnet       | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D      | M        | soldn           | $\frac{W}{m^2}$                                                                     | D    | Y      |
| LWnet       | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D      | M        | lwdn            | $\frac{W}{m^2}$                                                                     | D    | Y      |
| Qle         | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U      | M        | eta             | $\frac{W}{m^2}$                                                                     | U    | Y      |
| Qh          | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U      | M        | $shflx \\ gflx$ | $\frac{W}{m^2}$                                                                     | U    | Y      |
| Qg          | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D      | M        | gflx            | $\frac{\frac{W}{m^2}}{\frac{W}{W}}$ $\frac{W}{m^2}$ $\frac{W}{m^2}$ $\frac{W}{m^2}$ | D    | Y      |
| Qf          | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S to L | R        |                 |                                                                                     |      | U      |
| Qv          | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S to V | О        |                 |                                                                                     |      | U      |
| Qtau        | $\frac{\tilde{N}}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D      | R        |                 |                                                                                     |      | U      |
| Qa          | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D      | О        |                 |                                                                                     |      | U      |
| DelSurfHeat | $\frac{\tilde{J}}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I      | R        |                 |                                                                                     |      | U      |
| DelColdCont | $\begin{array}{c c} \overline{W}^2 \\ W$ | I      | R        |                 |                                                                                     |      | U      |

Table 13: Mapping of ALMA and NOAH output variables : General Water Balance

| ALMA         | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sign      | Priority | NOAH      | Units                                                    | Sign | Status |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------|----------------------------------------------------------|------|--------|
| variable     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |          | variable  |                                                          |      |        |
| Snowf        | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D         | M        |           |                                                          |      | U      |
| Rainf        | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D         | M        | prcp      | $\frac{kg}{m^2}$                                         | D    | Y      |
| Evap         | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U         | M        | evp       | $\frac{kg}{m^2}$                                         | U    | Y      |
| Qs           | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Out       | M        | run of f1 | $\frac{\frac{kg}{m^2}}{\frac{kg}{m^2}}$ $\frac{kg}{m^2}$ | Out  | Y      |
| Qrec         | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ${ m In}$ | O        |           |                                                          |      | U      |
| Qsb          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Out       | M        | runoff2   | $\frac{kg}{m^2}$                                         | Out  | Y      |
| Qsm          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S to L    | M        | snomlt    |                                                          |      | U      |
| Qfz          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L to S    | M        |           |                                                          |      | U      |
| Qst          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -         | R        |           |                                                          |      | U      |
| DelSoilMoist | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I         | M        |           |                                                          |      |        |
| DelSWE       | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I         | M        | delswe    | $\frac{kg}{m^2}$                                         | I    | Y      |
| DeslSurfStor | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I         | M        |           | ,,,,                                                     |      | U      |
| DelIntercept | $\begin{array}{c c} kg \\ m^2s \\ kg \\ m^2g \\ m^2g \\ kg \\ m^2g \\ m^2g$ | I         | R        |           |                                                          |      | U      |

Table 14: Mapping of ALMA and NOAH output variables : Surface State Variables

| ALMA      | Units                                                    | Sign | Priority | NOAH     | Units            | Sign | Status |
|-----------|----------------------------------------------------------|------|----------|----------|------------------|------|--------|
| variable  |                                                          |      |          | variable |                  |      |        |
| SnowT     | K                                                        | -    | M        |          |                  | -    | U      |
| VegT      | K                                                        | -    | M        |          |                  | -    | U      |
| BareSoilT | K                                                        | -    | M        | t1       | K                | _    | Y      |
| AvgSurfT  | K                                                        | -    | M        | t1       | K                | -    | Y      |
| RadT      | K                                                        | -    | M        | t1       | K                | _    | Y      |
| Albedo    | _                                                        | _    | M        | albedo   | -                | _    | Y      |
| SWE       | $\frac{kg}{m^2}$                                         | -    | M        | sneqv    | $\frac{kg}{m^2}$ | -    | Y      |
| SWEVeg    | $\frac{kg}{m^2}$                                         | _    | О        |          |                  | -    | U      |
| SurfStor  | $\frac{\frac{kg}{m^2}}{\frac{kg}{m^2}}$ $\frac{kg}{m^2}$ | -    | M        |          |                  |      | N      |

Table 15: Mapping of ALMA and NOAH output variables : SubSurface State Variables

| ALMA       | Units            | Sign | Priority | NOAH     | Units            | Sign | Status |
|------------|------------------|------|----------|----------|------------------|------|--------|
| variable   |                  |      |          | variable |                  |      |        |
| SoilMoist  | $\frac{kg}{m^2}$ | -    | M        | SMC      | $\frac{kg}{m^2}$ | _    | Y      |
| SoilTemp   | K                | -    | R        |          | 110              |      | U      |
| SMLiqFrac  | _                | _    | О        |          |                  |      | U      |
| SMFrozFrac | _                | -    | О        |          |                  |      | U      |
| SoilWet    | _                | _    | M        | mstavtot | _                | -    | Y      |

Table 16: Mapping of ALMA and NOAH output variables : Evaporation Variables

| ALMA      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sign | Priority | NOAH     | Units                                     | Sign | Status |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|----------|-------------------------------------------|------|--------|
| variable  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |          | variable |                                           |      |        |
| PotEvap   | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U    | R        |          |                                           |      | U      |
| ECanop    | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U    | R        |          |                                           | U    | Y      |
| TVeg      | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U    | M        | ett      | $\frac{kg}{m^2s}$                         | U    | Y      |
| ESoil     | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U    | M        | edir     | $\frac{\frac{kg}{m^2s}}{\frac{kg}{m^2s}}$ | U    | Y      |
| EWater    | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U    | R        |          | 110 0                                     |      | U      |
| RootMoist | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _    | M        | soilrz   | $\frac{kg}{m^2s}$                         |      | Y      |
| CanopInt  | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -    | R        |          | 110 0                                     | _    | Y      |
| EvapSnow  | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -    | R        |          |                                           | _    | Y      |
| SubSnow   | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    | R        |          |                                           | -    | Y      |
| SubSurf   | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    | R        |          |                                           |      | U      |
| ACond     | $\begin{array}{ c c c }\hline kg \\\hline m^2s \\ kg \\\hline m^2 \\ kg \\\hline m^2s \\ sg \\ sg \\ m^2s \\ sg \\ sg \\ m^2s \\ sg \\ sg \\ sg \\ m^2s \\ sg \\ $ | -    | M        |          |                                           | -    | U      |

Table 17: Mapping of ALMA and NOAH output variables : Other hydrologic Variables

| ALMA        | Units         | Sign | Priority | NOAH     | Units | Sign | Status |
|-------------|---------------|------|----------|----------|-------|------|--------|
| variable    |               |      |          | variable |       |      |        |
| Dis         | $\frac{m}{s}$ | _    | О        |          |       |      | U      |
| WaterTableD | m             | _    | О        |          |       |      | N      |

Table 18: Mapping of ALMA and NOAH output variables : Cold Season Processes

| ALMA          | Units | Sign | Priority | NOAH     | Units | Sign | Status |
|---------------|-------|------|----------|----------|-------|------|--------|
| variable      |       |      |          | variable |       |      |        |
| SnowFrac      | -     | -    | О        |          |       |      | U      |
| RainSnowFrac  | _     | -    | О        |          |       |      | U      |
| SnowfSnowFrac | -     | -    | О        |          |       |      | U      |
| IceFrac       | _     | -    | О        |          |       |      | U      |
| IceT          | m     | -    | О        |          |       |      | U      |
| Fdepth        | m     | -    | О        |          |       |      | U      |
| Tdepth        | m     | -    | О        |          |       |      | U      |
| SAlbedo       | _     | _    | R        |          |       |      | U      |
| SnowTProf     | K     | -    | R        |          |       |      | U      |
| SnowDepth     | m     | -    | R        |          |       | _    | U      |
| SliqFrac      | _     | -    | R        |          |       |      | U      |

Table 19: Mapping of ALMA and NOAH output variables : Variables to be compared with remote sensed data

| ALMA     | Units           | Sign | Priority | NOAH     | Units | Sign | Status |
|----------|-----------------|------|----------|----------|-------|------|--------|
| variable |                 |      |          | variable |       |      |        |
| LWup     | $\frac{W}{m^2}$ | U    | R        |          |       |      |        |

| ALMA        | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sign   | Priority | VIC          | Units                                 | Sign     | Status |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------------|---------------------------------------|----------|--------|
| variable    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          | variable     |                                       |          |        |
| SWnet       | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D      | M        | $net\_short$ | $\frac{W}{m^2}$                       | D        | Y      |
| LWnet       | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D      | M        |              |                                       |          |        |
| Qle         | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U      | M        | latent       | $\frac{W}{m^2}$                       | U        | Y      |
| Qh          | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U      | M        | sensible     | $\frac{W}{m^2}$                       | U        | Y      |
| Qg          | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D      | M        | $grnd\_flux$ | $\frac{\frac{W}{m^2}}{\frac{W}{m^2}}$ | D        | Y      |
| Qf          | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S to L | R        |              |                                       |          | U      |
| Qv          | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S to V | О        |              |                                       |          |        |
| Qtau        | $\frac{\tilde{N}}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D      | R        |              |                                       |          | U      |
| Qa          | $\frac{W}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D      | О        | advection    | $\frac{W}{m^2}$                       | D        | Y      |
| DelSurfHeat | $\frac{\tilde{J}}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I      | R        |              |                                       |          | U      |
| DelColdCont | $\begin{array}{c c} \frac{W}{m^2} \\ \frac{W}{W} \\ \frac{W}{$ | I      | R        | deltaCC      | $\frac{J}{m^2}$                       | Increase | Y      |

Table 20: Mapping of ALMA and VIC output variables: General Energy Balance

### 5 Final Remarks

The goal of LIS is to develop a leading edge land surface modeling and data assimilation system to support broad land surface research and application activities, to help define earth system modeling interoperability standards, and to lead the effective application of high performance computing to high-resolution, real-time earth system studies. The framework oriented design of LIS presented in this document and the use and adoption of standards such as ESMF and ALMA helps in providing a platform for land surface modelers and researchers. The extensible interfaces in LIS helps to ease the cost of development of new applications. Utilities such as tools for high performance computing and data assimilation helps researchers in rapid prototyping and development. Further, participation in the standards laid out by ESMF also helps in coupling with other earth system models.

## References

- [1] ALMA. http://www.lmd.jussieu.fr/ALMA.
- [2] CLM. http://www.cgd.ucar.edu/tss/clm/.
- [3] ESMF. http://www.esmf.ucar.edu.
- [4] GLDAS. http://ldas.gsfc.nasa.gov.

Table 21: Mapping of ALMA and VIC output variables: General Water Balance

| ALMA         | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sign      | Priority | VIC       | Units           | Sign | Status |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------|-----------------|------|--------|
| variable     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |          | variable  |                 |      |        |
| Snowf        | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D         | M        |           |                 |      | U      |
| Rainf        | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D         | M        | prec      | $\frac{mm}{hr}$ | D    | Y      |
| Evap         | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U         | M        | evap      | $\frac{mm}{hr}$ | U    | Y      |
| Qs           | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Out       | M        | run of f  | $\frac{mm}{hr}$ | Out  | Y      |
| Qrec         | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ${ m In}$ | О        |           |                 |      | N      |
| Qsb          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Out       | M        | base flow | $\frac{mm}{hr}$ | Out  | Y      |
| Qsm          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S to L    | M        |           |                 |      | U      |
| Qfz          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L to S    | M        |           |                 |      | U      |
| Qst          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -         | R        |           |                 |      | U      |
| DelSoilMoist | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I         | M        |           |                 |      |        |
| DelSWE       | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I         | M        |           |                 |      |        |
| DeslSurfStor | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I         | Μ        |           |                 |      | U      |
| DelIntercept | $\begin{array}{c c} kg \\ m^2s \\ kg \\ m^2g \\ m^2g \\ kg \\ m^2g \\ m^2g$ | I         | R        |           |                 |      | U      |

Table 22: Mapping of ALMA and VIC output variables : Surface State Variables

| ALMA      | Units                                                    | Sign | Priority | VIC            | Units | Sign | Status |
|-----------|----------------------------------------------------------|------|----------|----------------|-------|------|--------|
| variable  |                                                          |      |          | variable       |       |      |        |
| SnowT     | K                                                        | -    | M        |                |       |      | U      |
| VegT      | K                                                        | -    | M        |                |       |      | U      |
| BareSoilT | K                                                        | -    | M        |                |       |      | U      |
| AvgSurfT  | K                                                        | -    | M        | $surf\_temp$   | C     | _    | Y      |
| RadT      | K                                                        | -    | M        | $rad\_temp$    | K     | _    | Y      |
| Albedo    | _                                                        | -    | M        | albedo         | -     | _    | Y      |
| SWE       | $\frac{kg}{m^2}$                                         | -    | M        | swq            | mm    | _    | Y      |
| SWEVeg    | $\frac{kg}{m^2}$                                         | _    | О        | $snow\_canopy$ | mm    | _    | Y      |
| SurfStor  | $\frac{\frac{kg}{m^2}}{\frac{kg}{m^2}}$ $\frac{kg}{m^2}$ | -    | M        |                |       |      |        |

Table 23: Mapping of ALMA and VIC output variables : SubSurface State Variables

| ALMA       | Units            | Sign | Priority | VIC      | Units | Sign | Status |
|------------|------------------|------|----------|----------|-------|------|--------|
| variable   |                  |      |          | variable |       |      |        |
| SoilMoist  | $\frac{kg}{m^2}$ | -    | M        | moist    | mm    | -    | Y      |
| SoilTemp   | K                | -    | R        |          |       |      | U      |
| SMLiqFrac  | -                | -    | О        |          |       |      | U      |
| SMFrozFrac | -                | -    | О        |          |       |      | U      |
| SoilWet    | _                | -    | M        |          |       |      | U      |

Table 24: Mapping of ALMA and VIC output variables : Evaporation Variables

| ALMA          | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sign | Priority     | VIC           | Units           | Sign | Status |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|---------------|-----------------|------|--------|
| variable      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |              | variable      |                 |      |        |
| PotEvap       | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U    | R            |               |                 |      | U      |
| <i>ECanop</i> | $\frac{\frac{kg}{m^2s}}{\frac{kg}{m^2s}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U    | R            | $evap\_canop$ | $\frac{mm}{hr}$ | U    | Y      |
| TVeg          | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U    | M            | $evap\_veg$   | $\frac{mm}{hr}$ | U    | Y      |
| ESoil         | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U    | M            | $evap\_bare$  | $\frac{mm}{hr}$ | U    | Y      |
| EWater        | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U    | R            |               |                 |      | U      |
| RootMoist     | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _    | M            |               |                 |      | N      |
| CanopInt      | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _    | R            | Wdew          | $\frac{mm}{hr}$ | _    | Y      |
| EvapSnow      | $\frac{kg}{m^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    | $\mathbf{R}$ | $sub\_snow$   | $\frac{mm}{hr}$ | _    | Y      |
| SubSnow       | $\frac{kg}{m^2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _    | R            | $sub\_canop$  | $\frac{mm}{hr}$ | _    | Y      |
| SubSurf       | $\begin{array}{c} kg \\ \hline m^2 s \\ kg \\ m^2 s \\ kg \\ \hline m^2 s \\ kg \\ kg \\ m^2 s \\ kg \\ kg \\ m^2 s \\ kg \\ $ | _    | R            |               |                 |      | U      |
| ACond         | $\frac{m}{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -    | M            |               |                 |      | U      |

Table 25: Mapping of ALMA and VIC output variables : Other hydrologic Variables

|          | ALMA        | Units         | Sign | Priority | VIC      | Units | Sign | Status |
|----------|-------------|---------------|------|----------|----------|-------|------|--------|
|          | variable    |               |      |          | variable |       |      |        |
|          | Dis         | $\frac{m}{s}$ | -    | О        |          |       |      | U      |
| $\mid W$ | VaterTableD | m             | -    | О        |          |       |      | N      |

Table 26: Mapping of ALMA and VIC output variables : Cold Season Processes

| ALMA          | Units | Sign | Priority | VIC           | Units | Sign | Status |
|---------------|-------|------|----------|---------------|-------|------|--------|
| variable      |       |      |          | variable      |       |      |        |
| SnowFrac      | -     | -    | О        |               |       |      | U      |
| RainSnowFrac  | _     | _    | О        |               |       |      | U      |
| SnowfSnowFrac | -     | -    | О        |               |       |      | U      |
| IceFrac       | _     | _    | О        |               |       |      | U      |
| IceT          | m     | -    | О        |               |       |      | U      |
| Fdepth        | m     | _    | О        |               |       |      | U      |
| Tdepth        | m     | -    | О        |               |       |      | U      |
| SAlbedo       | _     | _    | R        |               |       |      | U      |
| SnowTProf     | K     | _    | R        |               |       |      | U      |
| SnowDepth     | m     | _    | R        | $snow\_depth$ | cm    | _    | Y      |
| SliqFrac      | -     | -    | R        |               |       |      | U      |

Table 27: Mapping of ALMA and VIC output variables : Variables to be compared with remote sensed data

| ALMA     | Units           | Sign | Priority | VIC      | Units | Sign | Status |
|----------|-----------------|------|----------|----------|-------|------|--------|
| variable |                 |      |          | variable |       |      |        |
| LWup     | $\frac{W}{m^2}$ | U    | R        |          |       |      |        |

- [5] LIS. http://lis.gsfc.nasa.gov.
- $[6] \ \ NOAH. \ \ ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/.$
- [7] VIC. http://hydrology.princeton.edu/research/lis/index.html.